搜索关键词:
链丝菌素 Streptothricin;clonNAT;选择性抗生素;诺尔丝菌素;革兰氏阳性和阴性菌;酵母菌和丝状真菌;植物;sat1基因;nat1基因;CAS:96736-11-7
基本描述:
诺尔斯菌素(Nourseothricin,缩写NTC),英文同义名:Streptothricin和clonNAT,由诺尔斯氏链霉菌( Streptomyces noursei)代谢产生的一种广谱型抗生素,因结构上具链丝菌素(Streptothricin,STs)化学基团,故归属于此类抗生素亚家族。天然产物提取的诺尔斯菌素(Nourseothricin)一般为ST-F和ST-D的混合物,具有极其宽广的抑制生长活性,原核生物如细菌;真核生物如包括白色念球菌在内的各种酵母菌、丝状真菌、原生生物、昆虫和植物【见下表格1】。诺尔斯菌素的作用机制是通过诱导mRNA错误编码,来抑制蛋白合成。
基于以上特性,诺尔斯菌素(Nourseothricin)是基因重组工程研究中非常优秀的选择性抗生素。抗性基因nat1最初从S. noursei分离所得,此基因能编码表达诺尔斯菌素N-乙酰转移酶,通过对诺尔斯菌素(NTC)上与糖基部分相连的ß-赖氨酸上的ß-氨基基团进行单乙酰化修饰,使得抗生素失活。研究发现,nat1基因在多种异质体系内发挥作用,使其在分子遗传学中是非常有价值的选择性工具。后面陆续发现具相同抗性机理的基因有:来自大肠杆菌E.Coli的基因stat1,stat2,stat3;来自链霉菌S. lavendulae的stat基因。另外,还有来自链霉菌S. albulus的新型sttH基因,作用机制不同,抗性在于编码表达异分支酸类型水解酶,能打开streptolidine内酰胺环上的酰胺键,将其转化成无活性的酸性产物。sttH基因抗性似乎只对酵母菌有活性,对细菌无效。
诺尔斯菌素(Nourseothricin,缩写NTC)具有以下应用优势:
1)粉末或者液体的稳定性非常高。粉末+4℃保存10年有效,+20℃保存2年有效。
2)粉末具非常高的水溶性(1g/L);
3)具非常低或几乎无背景抗性:因抗性蛋白仅在细胞内表达,不会在细胞培养基内被降解。
4)不会与大量其他抗生素,如氨基糖苷类抗生素潮霉素B或遗传霉素G418发生交叉反应。
5)不能用作诊疗抗生素,对临床上治疗的细菌微生物呈现出极弱抗性。因此与诊疗抗生素交叉反应很小;
6)特别适用于酵母分子生物学研究。不像一些营养缺陷型选择性基因,诺尔斯菌素抗性不会影响酵母正常生长,能用于工程菌,或者缺少营养性筛选基因表达的野生菌。
诺尔斯菌素(Nourseothricin,缩写NTC)使用方法和推荐浓度:
储存液配制:称量1000mg诺尔斯菌素溶解于5ml去离子水充分溶解后,用0.22µm滤膜过滤除菌,即制备200mg/ml储存液,本溶液置于+4℃保存,至少4周稳定,不会有任何可见的活力损失。长期保存,分装冻存于-20℃.
建议筛选浓度:诺尔斯菌素在相对较低的浓度下即可有效用于重组工程菌的筛选,大多数有机体的筛选浓度多在50-200µg/ml区间内。 具体可参考下表1。
产品订购信息:【日本进口分装,现货供应】
货号 |
产品名称 |
规格 |
价格(元) |
货期 |
20mg |
396 |
现货 |
||
MS0026-100MG |
Nourseothricin (NTC) Sulfate 硫酸诺尔斯菌素 |
100mg |
1056 |
现货 |
MS0026-500MG |
Nourseothricin (NTC) Sulfate 硫酸诺尔斯菌素 |
500mg |
4186 |
现货 |
另提供美国Cayman公司,原装进口的Nourseothricin (NTC) Sulfate 硫酸诺尔斯菌素,CAS:96736-11-7,货期:3-4周
货号 |
产品名称 |
规格 |
价格(元) |
品牌 |
16227 |
Nourseothricin (NTC) Sulfate 硫酸诺尔斯菌素 |
1mg |
350 |
Cayman |
16227 |
Nourseothricin (NTC) Sulfate 硫酸诺尔斯菌素 |
5mg |
700 |
Cayman |
16227 |
Nourseothricin (NTC) Sulfate 硫酸诺尔斯菌素 |
10mg |
1232 |
Cayman |
相关产品:
货号 |
产品名称 |
规格 |
价格(元) |
货期 |
MS0007-1ML |
Blasticidin S (10 mg/ml) 杀稻瘟菌素S(灭瘟素)(10 mg/ml) |
1ml |
450 |
现货 |
MS0007-5ML |
5×1ml |
2050 |
现货 |
|
MS0007-10ML |
10×1ml |
3600 |
现货 |
|
MS0009-125MG |
Zeocin (100mg/ml) 盐酸博莱霉素(100 mg/ml) |
125mg |
420 |
现货 |
MS0009-1000MG |
Zeocin (100mg/ml) 盐酸博莱霉素(100 mg/ml) |
8×125mg |
2850 |
现货 |
MS0010-1G |
G418 Sulfate (Geneticin) 遗传霉素 |
1g |
400 |
现货 |
MS0010-5G |
G418 Sulfate (Geneticin) 遗传霉素 |
5g |
1600 |
现货 |
MS0011-25MG |
Puromycin Dihydrochloride 嘌呤霉素盐酸盐 |
25mg |
540 |
现货 |
MS0011-100MG |
Puromycin Dihydrochloride 嘌呤霉素盐酸盐 |
100mg |
1800 |
现货 |
MS0011-500MG |
Puromycin Dihydrochloride 嘌呤霉素盐酸盐 |
500mg |
8500 |
现货 |
表1诺尔斯菌素(NTC)最低抑制浓度和选择性浓度列表
分类 |
物种 |
MIC(µg/ml) |
筛选浓度(µg/ml) |
Gram-negative bacteria 革兰氏阳性菌 |
Agrobacterium tumefaciens |
|
100 |
Escherichia coli |
2–12 |
50 |
|
Francisella tularensis |
|
50 |
|
Pseudomonas aeruginosa |
50 |
100 |
|
Gram-positive bacteria 革兰氏阴性菌 |
Bacillus subtilis |
5 |
50 |
Enterococcus faecium |
8-256 |
500 |
|
Staphylococcus aureus |
2–12 |
50 |
|
Streptomycetes 链霉菌 |
Streptomyces lividans |
6 |
100 |
Yeast 酵母菌 |
Candida albicans |
200 |
250– 450 |
Hansenula polymorpha |
|
100 |
|
Kluyveromyces lactis |
|
50 |
|
Pichia pastoris |
|
100 |
|
Saccharomyces cerevisiae |
25 |
75-100 |
|
Schizosaccharomyces pombe |
40 |
100 |
|
Other Ascomycota 其它子囊菌 |
Acremonium chrysogenum |
|
25 |
Aspergillus nidulans |
|
120 |
|
Cryphonectria parasitica |
|
100 |
|
Neurospora crassa |
|
200 |
|
Penicillium chrysogenum |
|
150-200 |
|
Podospora anserina |
|
50 |
|
Sordaria macrospora |
|
50 |
|
Trichophyton mentagrophytes |
|
50 |
|
Basidiomycota 担子菌 |
Cryptococcus neoformans |
|
100 |
Schizophyllum commune |
3 |
8 |
|
Ustilago maydi |
|
75-100 |
|
Protozoa 原生动物 |
Leishmania tarentolae, major etc. |
|
100 |
Phytomonasserpens |
|
100 |
|
Plasmodium falciparum |
75** |
|
|
Toxoplasma gondii |
|
500 |
|
Microalgae 微藻 |
Phaeodactylum tricornutum |
|
50-250 |
Thalassiosira pseudonana |
|
100 |
|
Plants 植物 |
Arabidopsis thaliana |
20 |
50-200 |
Daucus carota |
|
100 |
|
Lotus corniculatus |
|
50 |
|
Nicotiana tabacum |
|
100 |
|
Oryza sativa |
20 |
200 |
|
* MIC: Minimal inhibitory concentration ** IC50: Concentration inhibiting growth by 50% |
参考文献:
Abbott et al. (2013) Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl. Microbiol. Biotechnol. 97: 283
Alshahni et al. (2010) Nourseothricin acetyltransferase: a new dominant selectable marker for the dermatophyte Trichophyton mentagrophytes. Medical Mycology 48: 665
Ben-Daniel et al. (2012) Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA genedisrupted and gene-overexpressing mutant lines. Molecular Plant Biology 13: 187
Branduardi et al. (2014) Molecular Tools and Protocols for Engineering the Acid-Tolerant Yeast Zygosaccharomyces bailii as a Potential Cell Factory. Methods in Molecular Biology 1152: 63
Buhmann et al. (2014) A Tyrosine-Rich Cell Surface Protein in the Diatom Amphora coffeaeformis Identified through Transcriptome Analysis and Genetic Transformation. PLOS one 9: e110369 Calvey et al. (2014) An optimized transformation protocol for Lipomyces starkeyi. Current Genetics 60: 223
Cho et al. (2012) Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola. PLoS Pathology 8: e1002974
Cox et al. (2003) Superoxide Dismutase Influences the Virulence of Cryptococcus neoformans by Affecting Growth within Macrophages. Infect. Immunity 71: 173
Djouani-Tahri et al. (2011) A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus. Plant Journal 65: 578
Dubey et al. (2013) Role of the methylcitrate cycle in growth, antagonism and induction of systemic defence responses in the fungal biocontrol agent Trichoderma atroviride. Microbiology 159: 2492 9
Dubey et al. (2014) Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea. BMC Microbiology 14:18 El-Khoury et al. (2008) Gene deletion and allelic replacement in the filamentous fungus Podospora anserina. Curr. Genet. 53: 249
Gassel et al. 2014 Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl. Microbiol. Biotechnol. 98: 345
Giner-Lamia et al. (2015) CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803. MicrobiologyOpen 4:167
Goarin et al. (2015) Gene replacement in Penicillium roqueforti. Current Genetics 61: 203
Gold et al. (1994) Three selectable markers for transformation of Ustilago maydis. Gene 142: 225 Goldstein et al. (1999) Three New Dominant Drug Resistance Cassettes for Gene Disruption in Saccharomyces cerevisiae. Yeast 15: 1541
Goyard et al. 2014 In vivo imaging of trypanosomes for a better assessment of host–parasite relationships and drug efficacy. Parasitol. Int. 63: 260–268
Hamano et al. (2006) A Novel Enzyme Conferring Streptothricin Resistance Alters the Toxicity of Streptothricin D from Broadspectrum to Bacteria-specific. J. Biol. Chem. 281: 16842
Hentges et al. (2005) Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22: 1013
— —Written/Edited by V. Shallan【版权归MKBio懋康所有】
上海懋康生物科技有限公司是一家涉足于生命科学和生物技术领域研究的试剂、仪器和实验室消耗品与实验服务工作,主要从事细胞生物学、植物学、分子生物学、免疫学、生物化学、蛋白组学。生物制药与诊断试剂研发生产等领域。 本公司秉承“以人为本,以诚为信、合同守信”的经营理念。坚持"品质保障"的原则为广大客户提供优质产品。